	Solar Limpets	Project No.	10120
	•	Date	27/02/12
SYLVA	Typical calculations	Ву	JC/SE
GROUP	for wind uplift resistance.	Sheet No.	1 of 6

Introduction

SylvaGroup Ltd was commissioned to carry out typical calculations to investigate the potential holding down capacity of Solar Limpet roof fixing brackets to a supporting timber roof construction. The Solar Limpet brackets are fixed using proprietary MAGE screws for which the manufacturers have provided fixing data based on test evidence.

Product Description

Injection moulded using DVJ 504-29 UPVC, Solar Limpets are purpose designed, fully adjustable roof fixing brackets.

Solar Limpets are fitted to supporting roof timbers using MAGE screw fixings.

Solar Limpets provide a secure base onto which rails and solar panels can be attached.

Summary of Calculations

Typical calculations have been prepared to consider the fixing capacity of Solar Limpets and compare this with the applied wind loadings for an assumed site location and building shape.

A worst-case arrangement of panel sizes and rail supports was considered in order to establish the maximum likely uplift force to be carried by an individual Solar Limpet. See Figure A1.

The withdrawal capacity of 6.3mm MAGE fixings was provided as 7.0kN (5th percentile characteristic ultimate capacity for 60mm embedment) based on test data. This was cross-checked against calculated withdrawal capacity appropriate for short term (wind) loading. An allowance was made to reduce the MAGE screw capacity to account for non-standard edge distance in the supporting timber members. Two screws were assumed for each Solar Limpet.

Based on these calculations a maximum wind uplift of 2.8kN/m² may be carried.

Conclusion

We have considered the connection between the Solar Limpet roof fixing brackets and the underlying roof timbers, fixed using 6.3mm diameter MAGE fixings. Our calculations indicate that the Solar Limpets can be shown to have adequate fixing capacity to the roof structure to resist assumed wind uplift conditions which cover a large proportion of the UK.

Note that we have not reviewed the capacity of fixings between the two parts of the Solar Limpet roof fixing brackets, nor the fixings of the solar panel support rails to the Solar Limpet. These, along with other performance characteristics, are understood to be subject to a testing and assessment programme which is under way with BBA.

The installation of solar panels is considered a material alteration under Building Regulations and requires assessment by a competent person. Structural calculations should be prepared on a site specific basis to determine the number and arrangement of Solar Limpets which will be required for the particular roof construction under consideration.

	Solar Limpets	Project No.	10120
		Date	27/02/12
SYLVA	Typical calculations	Ву	JC/SE
GROUP	for wind uplift resistance.	Sheet No.	2 of 6

27/02/12

Appendix A - Structural Calculations

Two arrangements are considered below, which represent typical installation layouts.

Arrangement 1 with 3No. PV panels

Arrangement 2 with 4No. PV panels

Figure A1 Solar Panel Schematic Layout

Each typical PV panel is 990 x 1600mm in size. As such, the wind uplift area per Solar Limpet may be calculated as follows for each arrangement.

Arrangement 1 – wind area per Solar Limpet = $3(0.99 \times 1.6)/6 = 0.79 \text{ m}^2/\text{Solar Limpet}$ Arrangement 2 – wind area per Solar Limpet = $4(0.99 \times 1.6)/10 = 0.63 \text{ m}^2/\text{Solar Limpet}$

Arrangement 1 is most onerous.

Using MAGE test data

Ultimate withdrawal capacity, $F_{ult,k} = 7.0$ kN for 6.5mm dia. with 60mm embedment in C16 timber. See Appendix B for MAGE data sheet 7641 and analysis of test data.

	Solar Limpets	Project No.	10120
	•	Date	27/02/12
SYLVA	Typical calculations	Ву	JC/SE
GROUP	for wind uplift resistance.	Sheet No.	3 of 6

Using established spacing rules, a 6.5mm diameter screw should be placed no closer than 32.5mm from the edge of the timber being fixed, or an overall rafter width of 65mm. However typical roof timbers in the UK will be between 35mm and 50mm.

It is prudent therefore to apply a pro-rata reduction to the withdrawal value to account for reduced edge distance and potential inaccuracy of installation on narrow members.

Edge distance reduction = 35/65 = 0.54

Applying partial factors to account for duration of load, moisture content and safety gives, $F_d = (F_{ult,k}.k_{mod})/\gamma_m = (7.0*0.54*0.9)/1.3 = 2.6 \text{ kN}$ (short term, service class 1 & 2)

Using load partial factor of γ_Q =1.5 for variable actions, the maximum design wind uplift may be calculated as follows, assuming 2 MAGE screws per bracket.

Maximum design wind uplift = $(2^{2.6})/(1.5^{0.79}) = \frac{4.4 \text{ kN/m}^2}{1.5^{1.5}}$

Using Eurocode 5 design approach

Calculated withdrawal capacity for 6.5mm dia. x 80mm long, 74mm embedment in C16 timber = 3083 N (very short term, service class 1 & 2).

Apply edge distance reduction factor = 0.54

The maximum design wind uplift may be calculated as follows, assuming 2 MAGE screws per bracket.

Maximum wind uplift = $(2*3083*0.54)/(1.5*0.79*1000) = 2.8 \text{ kN/m}^2$

Summary of wind loading (See Appendix C for full calculations)

Site location:	Aberdeen
Building length:	20m
Building width:	10m
Height to eaves:	10m
Roof type:	20 degree duo pitch

The maximum wind uplift was calculated as 2.73kN/m² (local zone "G" at the edge of the roof area).

	Solar Limpets	Project No.	10120
	•	Date	27/02/12
SYLVA	Typical calculations	Ву	JC/SE
GROUP	for wind uplift resistance.	Sheet No.	4 of 6

Appendix B

SYLVA	Solar Limpets	Project No.	10120
		Date	27/02/12
	Typical calculations	Ву	JC/SE
GROUP	for wind uplift resistance.	Sheet No.	5 of 6

MAGE Test Data Analysis

Indicative tests were conducted on samples of 35 x 100mm C16 timber to establish: -

- the ability of the MAGE screw to be driven in to the narrow edge without splitting the timber and
- establish ultimate withdrawal capacity for 60mm embedment.

The tests were conducted using a calibrated loadcell suitable for a range of 0 to 20 kN.

Screw driven home

Withdrawal test in apparatus

Pull-out test results

Туре	7641 - 6.5mm diameter x 90mm long
Embedment	60mm
Timber	100 x 35 mm C16

Test No	F _{ult} (kN)
1	7.7
2	7.8
3	7.4
4	7.6
5	7.2
6	7.3
mean	7.50
SD	0.24
F _{ult,k} (kN)	7.00
k _n	2.13

	Solar Limpets	Project No.	10120
	•	Date	27/02/12
SYLVA	Typical calculations	Ву	JC/SE
GROUP	for wind uplift resistance.	Sheet No.	6 of 6

Appendix C – Wind Loading Calculations

	Project	Solar	Limpet		Job no. 10	120
SYLVA	Calcs for	Wind loadi	ng example		Start page no./Re	evision 1
	Calcs by JRC	Calcs date 04/03/2012	Checked by SE	Checked date 29/02/2012	Approved by	Approved date

SY LVA GROUP	Project Solar Limpet			Job no. 10120		
	Calcs for	Wind loadi	ng example		Start page no./Re	evision 2
	Calcs by JRC	Calcs date 04/03/2012	Checked by SE	Checked date 29/02/2012	Approved by	Approved date

The velocity pressure for the windward face of the height h is less than b (cl.7.2.2)	the building with a 0 degree wind is to be considered as 1 part as	
The velocity pressure for the windward face of the height h is greater than b but less than 2b (the building with a 90 degree wind is to be considered as 2 parts as cl.7.2.2)	
Peak velocity pressure - windward wall - Wind	0 deg and roof	
Reference height (at which q is sought)	z = 10000mm	
Displacement height (sheltering effects excluded)	h _{dis} = 0 mm	
Orographic location factor (Figure A.2)	s = 0.60	
Orography factor	$c_o = 1 + 0.6 \times s = 1.36$	
Exposure factor (Figure NA.7)	c _e = 2.59	
Peak velocity pressure	$q_p = c_e \times ((c_o + 0.6) / 1.6)^2 \times q_b = 1.77 \text{ kN/m}^2$	
Structural factor		
Structural damping	δ _s = 0.100	
Height of element	h _{part} = 10000 mm	
Size factor (Table NA.3)	c _s = 0.91	
Dynamic factor (Figure NA.9)	c _d = 1.02	
Structural factor	$c_{sCd} = c_s \times c_d = 0.927$	
Peak velocity pressure - windward wall (lower	part) - Wind 90 deg	
Reference height (at which q is sought)	z = 10000mm	
Displacement height (sheltering effects excluded)	h _{dis} = 0 mm	
Orographic location factor (Figure A.2)	s = 0.60	
Orography factor	$c_o = 1 + 0.6 \times s = 1.36$	
Exposure factor (Figure NA.7)	c _e = 2.59	
Peak velocity pressure	$q_p = c_e \times ((c_o + 0.6) / 1.6)^2 \times q_b = 1.77 \text{ kN/m}^2$	
Structural factor		
Structural damping	$\delta_s = 0.100$	
Height of element	h _{part} = 10000 mm	
Size factor (Table NA.3)	c _s = 0.92	
Dynamic factor (Figure NA.9)	c _d = 1.04	
Structural factor	$c_{sCd} = c_s \times c_d = 0.952$	
Peak velocity pressure - windward wall (upper	part) - Wind 90 deg and roof	
Reference height (at which q is sought)	z = 11820mm	
Displacement height (sheltering effects excluded)	h _{dis} = 0 mm	
Orographic location factor (Figure A.2)	s = 0.57	
Orography factor	$c_0 = 1 + 0.6 \times s = 1.34$	
Exposure factor (Figure NA.7)	c _e = 2.71	
Peak velocity pressure	$q_p = c_e \times ((c_o + 0.6) / 1.6)^2 \times q_b = 1.82 \text{ kN/m}^2$	
Structural factor		
Structural damping	$\delta_s = 0.100$	
Height of element	h _{part} = 1820 mm	
Size factor (Table NA.3)	c _s = 0.95	
Dynamic factor (Figure NA.9)	c _d = 1.04	
Structural factor	$c_{sCd} = c_s \times c_d = 0.979$	
Structural factor		
Structural damping	$\delta_s = 0.100$	
Height of element	h _{part} = 11820 mm	

	Project Solar Limpet				Job no. 10120	
	Cales for				Start page no /Revision	
	Wind loading example				3	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
GROUP	JRC	04/03/2012	SE	29/02/2012		
Sizo factor (Table NA 3)		o - 0.92				
Dynamic factor (Figure NA 9)		$C_{\rm s} = 0.92$				
Structural factor		$C_{0} = 1.04$	~ - 0 952			
			Ja – 0.332			
Structural factor - roof 0 deg						
Structural damping		δs = 0.100				
Height of element		h _{part} = 1182	2 0 mm			
Size factor (Table NA.3)		cs = 0.91				
Dynamic factor (Figure NA.9)		c _d = 1.02				
Structural factor		$c_{sCd} = c_s \times c_s$	Cd = 0.925			
Peak velocity pressure for inte	ernal pressure					
Peak velocity pressure – interna	l (as roof press	s.) q _{p,i} = 1.82 k	κN/m²			
Pressures and forces						
Net pressure		$p = c_{sCd} \times q$	$p \times C_{pe} - Q_{p,i} \times Q_{p,i}$	Cpi		
Net force $F_w = p_w \times A_{ref}$						

Roof load case 1 - Wind 0, c_{pi} 0.20, - c_{pe}

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	-0.90	1.82	-1.87	21.28	-39.89
G (-ve)	-0.70	1.82	-1.54	21.28	-32.74
H (-ve)	-0.33	1.82	-0.92	63.85	-58.92
I (-ve)	-0.50	1.82	-1.20	63.85	-76.78
J (-ve)	-1.17	1.82	-2.32	42.57	-98.83
Total vertical net	t force	F _{w,v}	= -288.64 kN		

Total horizontal net force

```
F<sub>w,v</sub> = -288.64 kN
F<sub>w,h</sub> = 15.07 kN
```

Walls load case 1 - Wind 0, c_{pi} 0.20, - c_{pe}

Zone	Ext pressure coefficient _{Cpe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	1.82	-2.38	42.91	-102.21
В	-0.80	1.82	-1.71	66.19	-113.11
D	0.80	1.95	1.08	200.00	216.65
E	-0.51	1.95	-1.28	200.00	-256.71

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Lack of correlation (cl.7.2.2(3) – Note) Overall loading overall section
$$\begin{split} F_{I} &= F_{w,WE} = \textbf{-256.7 kN} \\ F_{w} &= F_{w,wD} = \textbf{216.6 kN} \\ f_{corr} &= \textbf{0.86} \text{ as h/W is 1.182} \\ F_{w,D} &= f_{corr} \times (F_{w} - F_{I} + F_{w,h}) = \textbf{418.5 kN} \end{split}$$

Roof load case 2 - Wind 90, cpi 0.20, - cpe

Zone	Ext pressure coefficient Cpe	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	-1.47	1.82	-2.90	5.32	-15.43
G (-ve)	-1.37	1.82	-2.73	5.32	-14.51

	Project				Job no.	
	Solar Limpet				10120	
	Calcs for				Start page no./Revision	
$\nabla \nabla \sqrt{\Delta}$	Wind loading example			4		
$S \vdash V \land$	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
GROUP	JRC	04/03/2012	SE	29/02/2012		

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	-1.47	1.82	-2.90	5.32	-15.43
G (-ve)	-1.37	1.82	-2.73	5.32	-14.51
H (-ve)	-0.60	1.82	-1.40	42.57	-59.62
l (-ve)	-0.43	1.82	-1.11	159.63	-177.57
Total vertical n	et force	F _{w,v}	= -251.02 kN		

Total horizontal net force

F_{w,h} = 0.00 kN

Walls load case 2 - Wind 90, cpi 0.20, - cpe

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	1.95	-2.59	20.00	-51.86
В	-0.80	1.95	-1.85	80.00	-147.99
С	-0.50	1.95	-1.29	100.00	-129.23
Db	0.75	1.77	0.89	100.00	89.07
Du	0.75	1.82	0.96	9.10	8.75
E	-0.39	1.82	-1.04	109.10	-113.37

Overall loading

Equiv leeward net force for upper section Net windward force for upper section Lack of correlation (cl.7.2.2(3) – Note) Overall loading upper section Equiv leeward net force for bottom section Net windward force for bottom section Lack of correlation (cl.7.2.2(3) - Note) Overall loading bottom section

 $F_{I} = F_{w,wE} \ / \ A_{ref,wE} \times A_{ref,wu} = \textbf{-9.5} \ kN$ F_w = F_{w,wu} = **8.8** kN f_{corr} = 0.85 as h/L is 0.591 $F_{w,u} = f_{corr} \times (F_w - F_l + F_{w,h}) = 15.5 \text{ kN}$ $F_I = F_{w,wE} / A_{ref,wE} \times A_{ref,wb} = -103.9 \text{ kN}$ F_w = F_{w,wb} = **89.1** kN $f_{corr} = 0.85$ as h/L is 0.591 $F_{w,b} = f_{corr} \times (F_w - F_l) = 164.0 \text{ kN}$

